D-A249 679
TR

DTIC

MY2-BOOOO0Y FLECTE
[s MAY 61992

. G m

e

. i e

Development of DOD
C’l Systems Using

Commercial
Off-the-Shelf Products

RhCe e i)

Dr. Barry M. Horowitz

L STATEM
T —

et Y
t -t a3 ‘f)]‘-‘l‘}se-

5 01 100

92

= 92-12023
e LT

M92-B00QO0GY

Development of DOD
C*I Systems Using
Commercial
Off-the-Shelf Products

P a

Dr. Barry M. Horowitz
January 1992

Approved for public releasc:

distribution unlimited.

The MI'TRE Corporation
Burlington Road
Bedford, MA 01730

Acesm>iom For _

NTIS GRSMI A
_ RC TS o !
: Gosnsoeneod C] i

Juseit mt!m__.ﬁ__.—_-.l)

1
| Dissrtvayien/ »
Availabilisy Cedes

eail amd/or

Spoaial

PREFACE

This document contains the text of a keynote address originally given by Dr. Barry M. Horowitz, President
and Chief Executive Officer of The MITRE Corporation. at the MITRE-Bedford Software Center seminar
Using Off-the-Shelf Software in C Systems.

ACKNOWLEDGMENTS

Many people at MITRE contributed data and ideas to this document. Special thanks are expressed 1o
Judith A. Clapp and Roy W. Jacobus.

TABLE OF CONTENTS

SECTION

Introduction

Participants and Their Roles
Judgment

Important Philosophical Issues

Performance Specifications
System Architecture

Reducing Dependence on Specifications
Understand the User’s Needs
Understand COTS Products
Learn How to Evaluate System Architecture
Bring in Industry Differently
Relation of Present Methods to Industry
High-Risk and Low-Risk Phases of Development
A New Development Approach for COTS-Based C'f Systems

Life-Cycle Issues

PAGE

E SRS

ho'h

[WS]

TABLE

9

LIST OF TABLES

Examples of ESD as Development Command on Software-
Intensive Systems

Issues and Judgments Regarding Commercially Available
Equipment and Software

Vi

PAGE

INTRODUCTION
e

The use of commercial oft-the-shelf (COTS)
products in the development of command. control,
communications, and intelligence (C'H systems tor
the Department of Detense (DODy is crucial. Sig-
niticant reduction in the DOD budget and the
expectation of turther reductions will foree the de-
fense community to build lower cost systems that
do not depend heavily on customized hardware and
softwire. The concept of “open system architee-
ture,” where individual subsystems designed and
manufactured by ditferent industrial organizations
can be integrated into systems of high pertormange
(by virtue of common intertuce standards), s mak-
ing its appearance in the commercial marketplace.
This creates the possibifity that targe-scale military
systems can be itegrated at low cost from commer-
cral products. with relanvely short deselopment
schedules, The DOD will need to exploit this
possibility, -

An additional impetus tor the use of commer-
cral products is the public’s (and military com-
manders™) growing tamiharity with products readily
avatlable on the market for home and business use.
As part of their personal lises, military decision-
mahers are becoming aware of the powertul com-
puting and software options that can be obtained
oft-the-shelt, and will be unwilling to believe that
custom development is necessary o achieve desired
performance. As aresudl it is realistic 1o predict
that commercial systems will becomie the norm ftor
military C'T systems. with custom-designed equip-
mient the exception.

Oner the Tast few years, substantial effort has
been spent in initial attempts to integrate commer-
cially based products into military C'I systems,
From these cttorts, the defense community has de-
veloped @ sty le and approach to COTS integration,
Rapid prototy ping is bemg emploved extensivels as
part of the design process. Many protessionals in
the prototype arena are knowledgeable about open
system standards: this was not true as recently as
tour or tive years ago. Much more attention is being
given to commercial standards, because they are he-
coming useful, and because organizations in the

commercial world have been tormed o implement
them,

PARTICIPANTS AND THEIR ROLES

There are three major participants i a t pical
military development: (1) the using command. or
user, who sets the system requirements and who has
final responsibility for operating the systen: (2) the
development command. or developer, who is given
responsibility for developing a system mecting the
user’s requirements: and (3) industry. who actually
designs, produces, and tests both the development
versions and the final production versions of the
desired system. However, when the developments
are software-intensive systems with an emphasis on
the use of COTS products. these tvpical roles a, e
not always followed. Several examples are illus-
trated in the following hist of projects. for which the
Electronic Systems Division (ESD) of the Air Force
Aas the development command. supported by The
MITRE Corporation. The development approach.
and the roles apportioned to the three participants.
were somewhat ditferent in cach case (see table 1),

* Sentinel Byte's mission is to mahke intelligence
data originating from higher levels of command
available to the pilot doing mission planning.

* Granite Sentry s a command post, tocated in the
Cheyenne Mountain Complex in Colorado, tor
assessing ballistic nisstle warnings trom our
strategic radar and infrared sensors.

* NORTIC 15 a command post designed to help
NORAD track drug smugglers.

¢ The Message Handhing Ssstem receives mes-
sages on g network and disseminates them on the
hasis of full profiling.

e The Arborne Command and Control Center
(ABCCC) 15 an airborne platform that carries
operators and a large variety of radios tor com-
municating during a crisis.

* The Mission Plunning Ssystem is an automated
aid 1o assist in the planning ot air misstons.,

Table 1. Examples of ESD as Development Command on Software-Intensive Systems

System User User’s Role Developer’s Role Industry’s Role
Sentine! Byte USAFE. Generated requirements | Built two COTS Replicated developer’s
PACAF. prototypes installed at prototypes
TAC. AF sites. Success led to
MAC. decision to buy 15 more
SAC
Granite Sentry | NORAD Hired and managed Generated and analyvzed | Provided sottware
support contractors to system architecture. support to user
develop system maximizing COTS use
NORTIC NORAD Generated requirements | Developed system Bought COTS compo-
architecture and system | nents to implement
design. Selected a developer’s architecture.
contractor to buy COTS | Integrated, tested. and
components. Selected maintained system
another support contrac-
tor to integrate, test. and
maintain system
Message DIA Generated requirements | Generated specification. | Designed and built
Handling Hired contractor to prototype. maximizing
System demonstrate initial COTS use
prototype
ABCCC TAC Generated requirements | Generated product Designed and built
specification. Selected prototypes and
two contractors to build | production version
prototypes
Mission TAC Built 3/4 of system. Transitioned system to Designed and built
Planning asked developer to more open architecture. | system. using
System complete so that capability could | developer's architecture

grow by addition of
COTS products

JUDGMENT

The problem with using commercial products
is relating the commercially available equipment
and software to the mission needs. This probiem
involves the different skills and judgments listed in

table 2.

Table 2. Issues and Judgments Regarding
Commercially Available Equipment
and Software

Issue

Kind of
Judgment

What products are available
on the market?

Oversight of
entire commercial
market

Can commercial products be
integrated. even if individual
products have adequate
capability?

Technical

judgment

Will the completed COTS
system be operationally
useful?

User judgment

How much will it cost to add | Technical
capabihity later? judgment
How difficult will the COTS | Technicad
system be to modity? judgment

To what extent s the user
willing to compromise on
the system requirements,
balancing what is destred
versus what is readily
attainable?

Mission judgment

IMPORTANT PHILOSOPHICAL ISSUES

In cach of the projects described. different
judgments were made about the mixture of roles
which. when coupled with business decisions, led to

different acquisition styles.

While there is no best acquisition sthyvle. the dif-
ferent styles used in the projects described above
are not a sign of healthy variety. They did not result

from a set of Jogical decisions. but instead were
driven by the varying political and economic envi-
ronments surrounding each development. No clear
method or policy s available 10 aid in the selection
ot acquisition approaches. The detense community
has not vet dealt adequately with some important
philosophical issues regarding devclopments incor-
porating commercial products. Two of these issues
relate to performance specifications and system
architecture.

Performance Specifications

The problem of performance specitications in
cases where COTS use is desired has not vet been
satistactorily resolved. Air Force svstem develop-
ments are traditionally begun by writing pertor-
mance and tunctional specifications. These
specifications explain what the government wants a
contractor to do. thereby providing the contractor
with a firm basis on which to accept the risk of
building the hardware and software for the system
at an estimated cost.

However. when a system is to be developed
using commercial products, the design latitude
available when compared to building a system of
custom components is severely constrained. Design
freedom is implicit in the idea of a specification,
For programs driven by the desire to integrate un-
modified commercial hardware and software prod-
ucts. freedom of design is a false assumption. The
concept of writing a specification does not tit with
the idea of building systems from commercial parts.

In principle. a contlict between specifications
and the use of COTS products is not necessary.,
Before making a bid. industry could perform the
trade-off studies needed to identify applicable
COTS products. select those that represent the best
match to the specification. and verify that the se-
lected products could actually be integrated within
the proposed schedule and cost. However. projects
based on commercial products virtually always
have small budgets. and it is unreasonable to expect
a company to invest in extensive trade-oft studies
betore it bids on a project that otfers only a modest
return,

In practice, industry must use its knowledge
about commercial components (which currently is
limited) to mahe a caleulated guess about whether
those products can be integrated to meet the specifi-
cations. A wrong guess results in no options for re-
covery, because typically no money has been
budgeted by the government for any custom design.
For example. some deselopment projects at ESD
have been cancelled because the eftorts were started
with a specification and were fater discovered to be
inteasible using the selected COTS products: both
industry and the government took fosses. A way
must be tound to remove specitications trom the
pracess ot buving COTS-based systems.

System Architecture

A second problem not adequately resolved is
system architecture. which affects lite-cyele costs in
software-intensive systems. A farge percentage of a
software system is chunged over its lite eyele, and a
large fraction of the cost of owning a software sys-
tem oceurs atter development. Various estimates
indicate about 60 percent of the cost of software is
incurred after it is shipped to the user. Of that trac-
tion. about 70 percent is spent adding new features.,
either because the original capability was unsatis-
tactory or the mission changed. Simitarly. at ESD.
about halt the sottware etfort is spent reworking
what was inthally developed. even during develop-
ment. n totak, about S0 percent of CH software
developmunt ettorts are spent responding to
changes in the original specitications. The nature of
C*1 devetopment precludes holding firm to speciti-
catons omver a long tinme, due to the rapid tempo of
new commercial developments.,

To accommodate such variability in require-
ments, the system archuecture must be designed o
make appheations readily changeable. There is no
POINE I SPECIfy g Sy ery system function inevact
detail, because most tunctions witl undoubtedls
change somewhat during the devclopment. Without
an architectire that sapports changes. substantial
development funds wall be spent changing functions
that have been optimized to the wrong goal.

This situation arises because the using com-
mands believe they know exactly what is needed at
the beginning of the development. The development
commands believe their job is to sell the user’s de-
tined requirements. Thus, the development process
does not promulgate any scheme for thinking about
adjustments, In fact. the current process discourages
thinking about adjustments because suceess is de-
tfined as meeting the specitication.

REDUCING DEPENDENCE ON
SPECIFICATIONS

The problem of changing specifications can be
addressed by creating a new process. beginning
with a team whose only job is 10 devise an architec-
ture that will support making the system change-
able. With a sound architectural basis, even il the
team makes many crrors building the functions. it
will have created a scheme that makes it inexpen-
sive to nake changes. Today. most of the effort
goes into fooking at the user displays and the func-
tions to be sure they are correct. rather than looking
at whether or not the architecture is adjustable.

So tar as Tam aware. the goverament has never
intiated a C'1 development effort by asking tor a
system architecture explicitly designed for change-
ability . and it has never asked that a given archiec-
ture be evaluated for its ability 1o support change.
No method exists for generating such a specitica-
tion, and system engineers have no satisfactony way
to evaluate architectures. Qur community must in-
vent new technigues i this area. We should tirs
recognize that the development of a CTsystem s
atmed at a changeable architecture and a tirst
implementation of tunction -~ and then invest vig-
orous ctlort in the design of the architeciure and
perhaps equal eftort in the subsequent tunctional
design thut not much more eftort in the tunctional

destgngas is done today),

A parallel may be draw o with the housing i
dustry . Building a house mvolves avery mature
technology s with two major aspects: ¢y the finish-

-

ing of the house interior, concerning details such as
the number of baths and the dimensions of the
kitchen, and (2) the basic architectural design of the
house.

These two aspects of house-building. finishing
and architecture, are handled by two difterent sets
of professionals. Inspectors are employed to make
certain that state and local building codes are satis-
fied. Even though the consumer may not have tech-
nical knowledge about the spacing of studs or
thickness of concrete, he or she knows it is prudent
to have an expert thoroughly check these and other
building parameters. Few home-buyers would pur-
chase a house that did not have a careful review by
a building codes expert.

With confidence that the house’s basic archi-
tecture is sound and therefore extendable and
changeable. the consumer can specify the details of
mternal functions with the knowledge that those
functions are likely to change as economic circum-
stances change: for example, the consumer may

someday want bigger bathrooms or a larger kitchen.

In software systems, by analogy. the detailed
functions inside the house are emphasized while the
foundation of the house is virtually ignored. Al-
though the users are fully knowledgeable about the
desired functions of the software system. they have
hittle skill in the “building codes™ for software. Un-
fortunately. unlike the housing consumer. the soft-
ware user as vet has no orientation toward bringing
in the equivalent of the building codes inspector
who can insist that the basic software architecture
be sound and readily accommodate change in the
detailed functions.

Performance specifications that focus on com-
pleting an architecture create a negative environ-
ment for building systems from commercial
products. and a negative environment for looking
at the architecture from the viewpoint of change-
ahility. How might complex C'l software systems
be developed trom commercial products. using a
process that puts more emphasis on software archi-
tecture and is not based on performance specifica-
tions? One approach. described below. is to form a

team consisting of the users, developers. and indus-
try in various combinations, depending « n the de-
velopment phase.

Understand the User's Needs

The team. which could consist of a mixture of
users and developers. must understand the user’s
desires in detail.

Understand COTS Products

The team must have detailed knowledge of as
many available commercial products as possible.
There are countless commercial products on the
market. and new ones are appearing at a tremen-
dous rate. A substantial etfort is needed to under-
stand available products.

It is not practical to set up a special team that
would become expert in all the commercial prod-
ucts because the team would be overwhelmed by
the volume of products. The only feasible method is
to form one or more teams that work on and over-
see many different implementations of C'l systems.
[n that way, knowledge would be gained about not
only what products are available. but also how well
they integrate and what problems occur with par-
ticular integrations. This knowledge would not be
comprehensive. but over time would span a large
fraction of the necessary ingredients in C'I design.

Learn How to Evaluate Svstem Architecture

Satisfactory methods tor evaluating architec-
tures must be developed. Two relatively crude ap-
proaches are occasionally employed now. The first
involves building prototypes. According to my ex-
perience. the general interest in prototypes tends to
be oriented to display. analogous to selecting the
kind of kitchen the consumer wants in his or her
house. The second method involves evaluating pro-
totypes with respect to their architectures. The sec-
ond method is as crucial to the user, but is not as
apparent. As a result, there are few tunded etforts
devoted to evaluating the architectures of proto-
types. Unfortunately. funding that could be used for

this purpose is often expended on fixing systems
that have not been properly developed.

An important aspect of architecture evaluation
is a method for rejecting products that seem attrac-
tive but cannot be extended or expanded within the
chosen architecture. There is a strong tendency to
incorporate a product if it appears to ofter some at-
tractive new feature. without careful examination to
see whether the product will allow functional
changes at a later date, and without an estimate of
the cost to add on the next new commercial capabil-
ity. Although prototypes can help in estimating the
cost of future changes. they are seldom used in this
fashion. even though the cost issue is crucial.

COTS-based C'l developments tend to be low-
cost projects. driven by time and budget. If the de-
velopment cost and the user’s budget were known
at the outset. an informed judgment could be made
about what functional capabilities are affordable
(whereas a specification must be generated at a time
when the feasibility of using COTS products is in
doubt. as well as the practicality of future addi-
tions). A better process would be to build a proto-
type capability, learn about cost and architecture
trom the prototyping exercise, discuss functional
performance options and their associated cost with
the users, and then. given a budget. decide what is
possible,

Bring in Industry Differently

When the time arrives to bring industry into the
team. a new method must be found to make the se-
lection from among the bidders for a COTS C'l de-
velopment. Often. the company selected by the
government is the least expensive and the most
readily available. because both funds and schedule
are severely constrained. With reference to the
house-building analogy, it is clear that we would
not want to choose the contractor for our home
solely on the basis of cost and avatlability.

Having chosen the basic COTS elements of the
architecture. a rational approach is to favor compa-
nies that know the most about that class of COTS
products, because it is reasonable to expect those

companies to be more successful at integrating the
products at the lowest cost. In a given development.
if one company were found to be most knowledge-
able about all of the applicable COTS products.
then it would seem appropriate to select that com-
pany. On the other hand. following this reasoning.
it the selected architecture called for the integration
of COTS elements A, B. C. and D. and if company
I was found to be expert in integrating items A and
B while company 2 was expert in integrating items
C and D. the government might choose both con-
tractors. Unfortunately, the government would be
afraid to take this latter course, because in effect the
government would be acting as the prime contractor
responsible for integrating the system and would
therefore be accountable for successtul completion
of the overall development.

However. the problem of government account-
ability may not be severe. The government’s atti-
tude toward accountability stems from custom-
development projects that typically have very high
cost (tens to hundreds of millions of dollars); the
fear of becoming entangled in expensive litigation
is understandable in such cases. By contrast, the
scale of COTS C'l developments is typically in the
range of four or tive million dollars. When the gov-
ernment team has skills and knowledge to do the
integration job more professionally than an indus-
trial team (who may not know the user and product
selection as well), the government should strongly
consider taking on the integrator role.

RELATION OF PRESENT METHODS
TO INDUSTRY

While industry might not agree. 1 believe our
current practices in the development of C'1 COTS-
based systems are harmful to industry. A typical
scenario illustrates the point when the development
command requests proposals for a C'l system built
primarily from COTS products. This request is
made even though there 1s no proof that the specifi-
cation can be met with COTS products. (Occasion-
ally, feasibility is asserted by the developer because
one COTS version of the desired system has been
prototyped. However. the selected contractor is free

to choose any set of COTS products. The developer
does not know whether the contractor’s selection ot
products can do the job. and neither does the con-
tractor. for the reason stated earlier. No contractor
can afford to invest in proving feasibility betore the
bid is made.) Atter the selection, the contriactor be-
gins the development, with the understanding that
the specification must be met. When the contractor
is unable to meet the specitication within schedule.
the contractor begins (o fose money. Because these
jobs are tightly budgeted. it takes only a few
months of extra time before the contractor’s profits
vanish. The results of extended court coitests are
long detays, increased costs, and undesirable prod-
ucts. Industry bears the risk of meeting the user’s
requirements with its own selection of oft-the-shelf
products,

HIGH-RISK AND LOW-RISK PHASES OF
DEVELOPMENT

Once the trade-ofts of meeting user desires ver-
sus the performance of COTS products have been
made and are thoroughly understood, the develop-
ment of COTS-based C'1 systems becomes low
risk. The trade-offs allow accurate estimation of
integration costs and of the cost to incrementatly
add capability to the system. When the user’s real
budget is known, and when the user is willing to
temper his or her requirements to stay within that
budget. the risk becomes small. Generally. very ma-
ture COTS software is used so that the risk of en-
countering severe software bugs s relatively low.

However, before the trade-ofts have been com-
pleted. the development risk is very high because
the contractor is expected to meet a rigid set ot re-
quirements but is not allowed (0i cannot atford) to
do custom design. If the government were to select
the products and take the risk that the correct match
to the user’s needs has been made. then mdustry
could implement the design without being account-
able for the match to user requirements. and the risk
to industry would be considerably less. Industrs
should take responsibility for integrating the COTS
products well. and should not be concerned about

whether the product selection is optimum for the
user. The government should be responsible tor en-
suring the product selection mutches user needs.

ANEW DEVELOPME
COTS-BASED (C°I SY

‘T APPROACH FOR
FEMS

The preceding discussion results in a different
approach to the development of COTS-based C)
systems:

* The development cominand takes responsibility
tor ensuring that three critical aspects of the de -
velopment are properly traded oft with respect to
cost and performance:

- Balance of the cost to build and modity
— Availability of products
- Desires of the user

* The development command takes responsibility
tfor deciding whether, in a given case. it is better
tointegrate a system with a single contractor or
multiple contractors.

e Even if a single contractor is selected. the user
and development commands take :2sponsibility
tor correct product selection. Contractor szlec-
tion is not based on specifications, but on the
contractor’s ability to integrate. Under this new
procedure. if the performance of the itegrated
system is poor. then the assessment of blame
depends on the cause. If both the contractor and
the integration plan prove to be sound. then the
development command is at fault. If. however.
the integration was not performed well. then the
contractor is at tault and should be replaced.

* The develepment command must have a reason-
ably comprehensive knowledge of the COTS
marketplace to ensure that the final selection of
products is chosen trom the very large number
of commercial products available. The process
requires contidence that a good source has not
been averlooked. or that some ditterent COTS
vendor will not later contront the developer with
a superior product.

* The development command must be prepared to
evaluate an architecture for basic soundness and
the ability for change at reasonable cost. The
user must be convinced that the selected archi-
tecture is resilient and adaptable. The govemn-
ment’s job is to select the system architecture
that satisfies the user’s requirements at a time
when the final system requirements are not yet
fully known.

* Finally. the development command must find a
way to judge the integration activities performed
by the contractor. Today. this issue is confused
by the need ta meet specitications. When the
contractor has conducted a high quality integra-
tion effort. it is not appropriate to hold the con-
tractor responsible for the performance of
commercial equipment and software.

This summarizes a new model of how COTS-
based developments should be done. It is important
that an effective approach for this class of develop-
ment be put in place. because the economics of sys-
tem development will greatly emphasize the
integration of COTS products.

LIFE-CYCLE ISSUES

We are entering a period in which the DOD
will not have enough money to replace C'1 systems;
instead. the systems will have to be maintained and
upgraded over a period of many years. It is not
clear who will be given this maintenance role —
industry. the user. the developer. or the logistics
organizations. The issue of organizational role is
important and should not be dismissed on the basis
of a given command's mission or the assertion that
the user must retain control of the process.

If a system composed of COTS products is
modified or evolutionary improvements are made.
the integrated off-the-shelf products of the system
should not be moditied because the cost will be
high. Any additions should be more off-the-shelf
products. and perhaps a small number of
custom-designed modules.

The most important factor in upgrading a sys-
tem should be knowledge of the system’s architec-
ture. If a system’s architecture has been properly
designed to accommodate change, the people who
perform the life-cycle maintenance and upgrade
role should be experts in that architecture so they
can properly exploit the opportunities for change in
the system. At present. this assignment of experts
does not take place. and no effort is expended to
provide the necessary architectural information to
the actual maintainers and upgraders. When indus-
try is given the task. the people who do the mainte-
nance are not the designers of the architecture, but
rather those who wrote the final application
software.

The life cycle is something that we are not
thinking about properly, and the issues of transfers
of command, transfers of responsibilities. and trans-
tfers of money are quite complex. However, this is
an area where we must create a more etficient way
of doing business. Ideas for handling the full life-
cycle of COTS-based C'I systems need develop-
ment to exploit the opportunities to lower risk and
save money.

